If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1x^2+-5x+-6=0
We add all the numbers together, and all the variables
x^2-5x=0
a = 1; b = -5; c = 0;
Δ = b2-4ac
Δ = -52-4·1·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5}{2*1}=\frac{0}{2} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5}{2*1}=\frac{10}{2} =5 $
| -0.8y=1.3 | | X^2-18x=49 | | 038y=1.3 | | h^2-18h=49 | | 2(z+8)=7z | | 4m^2-4m+m=0 | | 5(-4+3b)=4(6b-1)+2 | | 6t-(-1/6)=9 | | z^2-3z-70=0 | | 2/5n-5=3 | | 2x+x+8+x=2x+15 | | 6t-0.1666=9 | | 29=k÷4 | | -3(4-5b)=108 | | X^2-20x+49=0 | | 2x2+5x+9=0 | | |x-4|=-20 | | (X+3)/2=(5x-1)/4 | | 14x2+23x+3=0 | | X+3/2=5x-1/4 | | -7-6(x+4)=-13 | | 8m-5(m-2)-7=0 | | n/9=2/6 | | (7x-10)^-3/5=0 | | 2b—9=1 | | t^2-3t-304=0 | | (7x-10)^-3/5=25/14 | | 8(3x+4)=24x-5 | | 10x+8-29=9 | | d-35/12=25/6 | | x^2+2x+1=16x-47 | | 9x-2=128 |